
Bi-Directional Decoder Model with Efficient Fine-Tuning of Embedding for
Named Entity Recognition

Panuwat Assawinjaipetch
Japan Advanced Institute of Science

and Technology
a.panuwat@jaist.ac.jp

Kiyoaki Shirai
Japan Advanced Institute of Science

and Technology
kshirai@jaist.ac.jp

Virach Sornlertlamvanich
Sirindhorn International Institute of

Technology
virach@siit.tu.ac.th

Sanparith Marukatat
Thailand’s National Electronics and

Computer Technology Center
sanparith.marukatat@nectec.or.th

Abstract

Named Entity Recognition (NER) is one of
the important tasks in natural language pro-
cessing. In this paper, we propose a novel
method for NER in Japanese. It consists of
three deep learning modules: a Character En-
coder, Word Encoder and Tag Decoder, which
are implemented by Long Short-Term Mem-
ory (LSTM) or Bi-Directional LSTM (BiL-
STM). Pre-trained character and word embed-
dings are used as the input of our model. Our
new idea is to combine a forward and back-
ward LSTM at Tag Decoder. This enables us
to consider named entity (NE) tags of both
the previous and succeeding words in the clas-
sification, while only a previous NE tag was
taken into account in most of the past stud-
ies. We also introduce a separate fine-tuning
of the embedding that enables us to efficiently
fine-tune the parameters of the character and
word embeddings. In this method, the param-
eters of embeddings and other model param-
eters are trained separately. In an experiment
using a large Japanese named entity tagged cor-
pus, the F1-score of our proposed method was
0.944, which was better than the baseline by
0.06 points.

1 Introduction

Named Entities Recognition (NER) is the task of
identifying named entities, such as person, location,
organization, and so on, in a text. An NER system is
often used as a core system in various types of Nat-
ural Language Processing (NLP) including question
answering, information retrieval, dialogue system,

topic modeling, etc. In modern research, NER sys-
tems are implemented as classifiers using abstract
representation of a sentence as features, where an
abstract representation is obtained by deep learning
architectures.
NER is usually defined as a sequential labeling

problem. Regarding a word sequence of a given
sentence as a time sequence, named entity (NE) tags
for words are determined one by one from the first to
last words. In order to classify an NE tag of a word
in a certain time step, it is common to use an NE tag
determined in the previous time step as a feature for
classification. In this research, we propose a novel
method to use the NE tags of not only the previous
but also the succeeding words in a deep learning
model.
On the other hand, fine-tuning of the word em-

bedding is widely applied in deep learning models
for NLP. That is, the word embedding is pre-trained
using a huge amount of texts in a general domain,
then the parameters of the word embedding are up-
dated using a relatively small amount of data that
is specific to the target domain. Another contribu-
tion of this paper is to propose a novel method for
fine-tuning of the word and character embeddings.
It performs parameter estimation with a deep neural
network and fine-tuning of embeddings separately.

2 Related work

2.1 Natural language processing with deep
learning

Recently, deep learning has been actively studied in
the NLP research field. Collobert et al. (2011) intro-

324 
Pacific Asia Conference on Language, Information and Computation (PACLIC 33), pages 324-333, Hakodate, Japan, September 13-15, 2019 

Copyright © 2019 Panuwat Assawinjaipetch, Kiyoaki Shirai, Virach Sornlertlamvanich and Sanparith Marukatat



duced a neural network model for NLP. Their sys-
tem used minimal feature engineering but achieved
promising results. However, the proposed feed for-
ward network could not capture relations between
the words in a sentence, although they can be a use-
ful feature for various NLP tasks. Recurrent Neural
Network (RNN) has been proposed, which is well-
known for its ability to detect hidden relationship
between words. Later, RNN and its variants have
been applied for many NLP applications. RNN can
be generally classified into three types. The first
one is the traditional RNN called the Hopfield net-
work, proposed by Hopfield (1982). The second
one is the most popular network, called Long Short-
Term Memory (LSTM), proposed by Hochreiter and
Schmidhuber (1997). It was also the first network
that tried to mitigate the vanishing gradient prob-
lem. The third one is Gate Recurrent Unit (GRU)
proposed by Cho et al. (2014). Since the second and
third networks were less sensitive to the problem of
vanishing gradient, most modern research tends to
use them rather than the traditional RNN. However,
it is still uncertain which is better, LSTM or GRU.
Finally, models that combined neural network in for-
ward and backward directions, such as bi-directional
LSTM (BiLSTM) (Graves and Schmidhuber, 2005),
achieved further improvement due to their ability to
capture left and right contexts.

2.2 Deep neural network for named entity
recognition

The modern neural architectures for NER can be
broadly classified into categories according to their
representation of an input sentence. The represen-
tation can be based on words, characters, and other
features such as affix n-gram, aswell as combinations
of these.

2.2.1 NER based on word embedding
In the usual deep neural networks for NER, a se-

quence of words in a sentence is given as an input.
Usually, each word is represented by a word embed-
ding and given to the neural networks. Collobert
et al. (2011) first introduced a convolutional neural
network that accepted a word sequence as an in-
put. Then, several methods of RNN that handled
a sequence of words were proposed (Mesnil et al.,
2013; Nguyen et al., 2016). Huang et al. (2015) pro-

posed LSTM with Conditional Random Field (CRF)
(Lafferty et al., 2001) that achieved an 84.26% F1
score on the CoNLL-2003 English data set (Tjong
Kim Sang and De Meulder, 2003). By slightly
modifying this model, Shao et al. (2016) proposed a
window-based bi-directional LSTM for NER. Neu-
ral network models for NER on specific domains
(e.g. the medical domain) have also been investi-
gated (Chalapathy et al., 2016; Xu et al., 2018).

2.2.2 NER based on character embeddings
Each sentence is taken to be a sequence of char-

acters in several previous methods. Each character
is converted into a vector representation by char-
acter embedding. The potential of the character
NER neural model was first highlighted by Kim et
al. (2016). The character based architecture has the
ability to tackle an out-of-vocabulary problem and
can improve the performance of NER in morpho-
logically rich languages. The architecture was ap-
plied to various languages such asVietnamese (Pham
and Phuong, 2017) and Chinese (Dong et al., 2016).
Kuru et al. (2016) applied a character based model
to 7 different languages.

2.2.3 NER based on word and character
embeddings

Several studies have proven that the incorporation
of both word and character sequences in a neural net-
work model can contribute to develop a strong NER
system. Ma and Hovy (2016) and Chiu and Nichols
(2016) proposed such models and achieved 91.21%
and 91.62% F1-score on the CoNLL-2003 English
data set, respectively. Misawa et al. (2017) proposed
a model using word and character emdeddings for
Japanese NER. Lample et al. (2016) and Yang et al.
(2016) applied BiLSTM and GRU for feature extrac-
tion at both the word and character levels.

2.3 Output layer in neural based NER models
Most neural network models for NER consist of two
parts. One is constituted by the layers to obtain an
abstract representation of an input from word and/or
character embeddings. The other is constituted by
the layers that determine an NER tag for each word
based on the abstract representation. Hereafter, we
call the latter the hidden2tag layer. CRF has been
commonly used in the hidden2tag layer. However,

325



other networks are also used. For example, ?) and
Mesnil et al. (2013) proposed methods to use RNN
and feed-forward network in the hidden2tag layer.

However, to the best of our knowledge, no bi-
directional RNN or LSTM has been used in the hid-
den2tag layer. As discussed in Section 1, NER is
usually regarded as a sequential labeling problem,
where the NER tags of words are determined one
by one. Furthermore, the NE tag of the previous
word is commonly used in the classification of the
NE tag for the current word. However, the NE tag
of the succeeding word cannot be used as a feature,
since it is not determined yet in a sequential label-
ing. If the NE tags are determined in a backward
direction (from the last to first word), the succeeding
NE tag can be used, but the previous NE tag cannot.
Therefore, the bi-directional RNN or LSTM cannot
be applicable to the hidden2tag layer. Intuitively,
both the NER tags of the previous and succeeding
words are effective for NER. This paper proposes a
way to use both of them.
Mesnil et al. (2013) proposed a model called bi-

directional Jordan-type RNN for the slot filling task
in spoken language. Their model also considered
both the previous and succeeding output tags, but at
time t only the output tags in the near words from
t−T to t +T were used. Our model combines the
ordinary forward and backward LSTM that can take
long dependencies into account.

3 Proposed method

3.1 Task
We define classes of named entities following
Sekine’s extended named entity hierarchy (version
7.1.0)(Sekine and Nobata, 2004)1, which consists of
200 fine grained named entity classes. Since the
number of NE classes is large, coarse grained NE
types in the hierarchy are used. Table 1 shows a list
of the 26 NE classes in our NER task. An extended
named entity annotated corpus in Japanese (Hasi-
moto et al., 2008) was used to develop our method.2
In the corpus, named entities are annotated with IOB
encoding, where the NE classes are those in Sekine’s
extended named entity hierarchy. The corpus con-

1https://nlp.cs.nyu.edu/ene/
2Although the corpus includes newspaper articles and white

papers, only news texts were used in this study.

Table 1: List of named entity classes
God, Percent, Location, Latitude Longi-
tude, Product, Ordinal Number, NameOther,
Numex Other, Multiplication, School Age,
Timex, Age, Natural Object, Disease, Per-
son, Organization, Facility, Colour, Money,
Point, Rank, Countx, Frequency, Measure-
ment, Event, Period

sists of 8,228 articles, 53,224 distinct words, and
2,226,147 tokens. It is about 7.4 times larger than
the CoNLL-2003 English corpus, which consists of
1,393 articles and 301,418 tokens. As preprocess-
ing, we used the tool CaboCha (Taku Kudo, 2002)
for word segmentation, POS tagging, and chunking.

The graphical notation of the task definition is il-
lustrated in Figure 1. An input of our model is a sen-
tence represented as a sequence of words {w1 · · ·wn}.
The number of the words for each sentence is fixed
at n: padding is used when the length of a sentence
is less than n. A sentence is also represented as
a sequence of characters {c1 · · ·cm}. Similarly, the
number of the characters in a sentence, denoted bym,
is also fixed. Following the IOB encoding of named
entities, the model predicts an output tag ti for each
word wi. ti is represented by Bx, Ix or O, where x
stands for a type of a name entity (e.g. “Organiza-
tion”, “Person”).

Figure 1: Task definition

3.2 Model

Our proposed model is based on Shen’s architecture
(Shen et al., 2018) , which achieved a 90.89% F1-
score on the CoNLL-2013 dataset. An overview
of our model is shown in Figure 2. It consists of
three modules: Character Encoder, Word Encoder
and Tag Decoder. Tag Decoder corresponds to the
hidden2tag layer.

326



Figure 2: Overview of NER model

Figure 3: Character Encoder

3.2.1 Character Encoder

Character Encoder produces an abstract represen-
tation of a word from a sequence of characters. The
motivation of introducing this module is that some
Japanese characters indicate types of named enti-
ties. For example, the character c5 “会(kai)” in Fig-
ure 1 literally means “association”. A proper noun
including it tends to be classified as an organiza-
tion. Similarly, a proper noun including the character
“岳(gaku)”, which means “mountain”, tends to be a
location.

The architecture of Character Encoder is shown
in Figure 3. Character embedding is entered as an
input of Character Encoder. Character embedding is
pre-trained from the training corpus by the skip-gram
model implemented by the word2vec tool (Mikolov
et al., 2013). In our preliminary experiment, it was
found that a single direction LSTM was slightly bet-
ter than BiLSTM. Thus, we apply a single direction
LSTM, while Shen et al. (2018) used BiLSTM in
Character Encoder. The hidden state of the last char-
acter of each word is passed to the next module. The
output of Character Encoder applied to the ith word
is denoted by hci.

Figure 4: Word Encoder

3.2.2 Word Encoder
Word Encoder produces contextual information of

the words in a sentence. The architecture of Word
Encoder is shown in Figure 4. The word embedding
ofwi and the output of Character Encoder hci are con-
catenated, then this is passed to the BiLSTM model.
Finally, the hidden state of each word hwi is obtained
as the output of this module. It is almost the same as
Shen’s original model (Shen et al., 2018) except that
CNN was used in their model. In addition, the word
embedding is pre-trained from the training data by
the skip-gram model using the word2vec tool.

3.2.3 Tag Decoder
For each word wi, Tag Decoder predicts the output

vector (denoted by oi) that represents the distribution
of the scores of the output tags. The architecture of
Tag Decoder is shown in Figure 5. The output of
Word Encoder hwi and the previous output vector
oi−1 are concatenated and passed to LSTM. The out-
put of LSTM (hdi) is augmented by two additional
features. One is the POS embedding pei that repre-
sents the information of the POS (pi) of each word.
The other is the Japanese particle embedding jp that
represents the syntactic information of the chunk.3
Since we believe that both POS and the Japanese
particle are effective for NER, the hwi are concate-
nated with pei and jp. Then, they are entered to a

3“Particle” is one of the POSs and represents a case maker
in Japanese. It plays an important grammatical role, especially
in determining the type of a chunk. For example, a chunk “noun
+ ga” represents a nominative case of a predicate, while “noun
+ ni” represents a dative case (“ga” and “ni” are Japanese parti-
cles). For each chunk, the particle that appears in the rightmost
position (denoted by JP in Figure 5) is identified, which deter-
mines the grammatical role of the chunk. Then the embedding
of JP, denoted by jp, is added to hdi of all the words in the
chunk.

327



feed forward network (FFN) to determine the output
vector oi. As for the final result, a single NE tag ti for
each word is determined by the index of the highest
value in the output vector oi.

3.2.4 Two directional Tag Decoder
We propose a new tag decoder that uses the infor-

mation of the previousNE tag (the output vector oi−1)
and the succeeding NE tag (oi+1) for the decoding of
ti, since we can assume that both of them are effec-
tive features. Note that BiLSTM cannot be applied
as Tag Decoder. oi+1 is not predicted by the model
at time i when the NE tags are determined in the
forward direction, and using the backward direction
leaves oi−1 undetermined. In our method, two uni-
directional LSTM models are trained in the training
phase and combined in the test phase as follows.

• M f , a model using a forward LSTM in Tag De-
coder, is trained. In this model, ot−1 is added
as an input of LSTM at time i, as shown in
Figure 5.

• Mb, a model using a backward LSTM in Tag
Decoder, is trained. In this model, ot+1 is added
as an input of LSTM at time i.

• In order to recognize named entities from an
unknown sentence, M f and Mb are applied and
the output vectors o f

i and ob
i are obtained. Then,

the average of oi = (o f
i + ob

i )/2 is calculated.
The NE tag at time i is determined by the index
of the highest score of oi.

3.3 Separate embedding fine-tuning
In our method, the parameters of the word and char-
acter embeddings are fine-tuned, that is, they are
updated through training of the NER model. How-
ever, since the number of parameters is increased
by the fine-tuning, not only does this involve a high
computational cost, but also the fine-tuned embed-
ding parameters might not fit the NER task well.
Our method, called separate embedding fine-tuning,
tackles these problems. The basic idea is to train the
embedding parameters and model parameters sep-
arately. The model parameter are the parameters
except for the word and character embeddings, in-
cluding LSTM in Character Encoder, BiLSTM in

Figure 5: Tag Decoder

Word Encoder, part-of-speech embedding, Japanese
particle embedding, LSTM inTagDecoder, and FNN
in Tag Decoder. Our separate embedding fine-tuning
is carried out as follows.

1. Word and character embeddings are pre-trained.
They are used as initial embedding parameters.

2. The classification model is trained until the loss
function is saturated. In this step, only the
model parameters are estimated, while the em-
bedding parameters are fixed.

3. The model is trained again, where only the em-
bedding parameters are updated and the model
parameters are fixed. the embedding param-
eters are fine-tuned until the loss function is
saturated.

4 Evaluation

4.1 Experimental settings
The news articles in the NE tagged corpus were di-
vided into about 90,000 sentences, then split into
training, development and test data-sets. The propor-
tions of the training, development and test data are
80%, 10% and 10% respectively. Each subset con-
tains named entities of almost all 26 classes. Among
52,208 NE types in all the data-sets, 45,097(86%)
NEs are ambiguous, i.e. they have two or more NE
classes, while 7,111(14%) NEs have one NE class.
Table 3 shows the statistics of the data-sets.

328



Table 2: Definition of models

Character Word Tag pre- fine- vector size
Encoder Encoder Decoder trained tuning hidden pos jp

Shen’s model BiLSTM BiLSTM forward LSTM no – 128 – –
TDf-small LSTM BiLSTM forward LSTM no – 128 128 128
TDf LSTM BiLSTM forward LSTM yes whole 256 64 64
TDb LSTM BiLSTM backward LSTM yes whole 256 64 64
TDfb LSTM BiLSTM forward&backward yes whole 256 64 64
TDfb-sep LSTM BiLSTM forward&backward yes separate 256 64 64

Table 3: Dataset
Data Sentence Token NE
Training 71,854 1,781,685 187,814
Development 8,980 222,403 23,278
Test 8,980 222,073 23,283

The models were trained on Google Colaboratory,
which allows us to use one Tesla K80 GPU. With the
development data, we use ADAM(Kingma and Ba,
2014) for the optimization of the hyper parameters
in the following configuration:

1. Number of hidden units in LSTM/BiLSTM =
128 or 256

2. Optimizer ADAM learning α = [10−4, 10−7],
β1 = 0.5, β2 = 0.999, ε = 10−8

Table 2 summarizes methods compared in this ex-
periment. First, we implemented almost the same
model as that of (Shen et al., 2018) as the baseline.
Next, TDf-small, our base model with a relatively
small neural network, was trained for quick compar-
ison with the baseline. A major difference between
them is that inclusion of POS and Japanese particles
is only applied by TDf-small.
The rest of the models use pre-trained character

and word embeddings, as indicated in the column of
“pre-trained” in Table 2. In these models, we in-
creased the number of hidden units from 128 to 256,
since this was able to improve the F1-score in our
preliminary experiment. On the other hand, we re-
duced the dimension of the vector of POS (pos) and
Japanese particles ( jp) from 128 to 64, considering
the additional computational cost for the fine-tuning
of the word and character embeddings. TDf, TDb
and TDfb use forward, backward and both LSTM

Figure 6: F1-score on the development data of Shen’s and
our model

in Tag Decoder respectively, where all parameters
including word/character embeddings are trained si-
multaneously. Finally, TDfb-sep was trained with
our separate embedding fine-tuning proposed in sub-
section 3.3.
The precision, recall and F1-score of each named

entity class on the test data were measured in the
experiment. However, for the comparison, a micro
average of the F1-score for 26 NE classes is used as
the major evaluation criterion.

4.2 Results and discussion

Figure 6 shows the F1-score on the development data
of the baseline and our model. It shows that TDf-
small clearly outperforms Shen’s model, which is
one of the state-of-the-art models. The number of the
epochs for training themodelswas determined so that
the F1-score becomes the highest on the development
data, then the NER performance of twomodels in the
test data was measured. The F1-score of TDF-small

329



Table 4: Performance of NER on the test data
Model F1-score statistical test
Shen’s model 0.8839 –
TDf 0.9316 –
TDb 0.9302 p < 0.05 (vs TDf)
TDfb 0.9337 p < 0.05 (vs TDf)
TDfb-sep 0.9440 p < 0.01 (vs TDfb)

Table 5: F1-score comparison between TDf and TDb
NE class TDf TDb dif.∗
Product 0.942 0.946 −0.004
Person 0.957 0.958 −0.001
Timex 0.985 0.983 +0.002
Countx 0.940 0.929 +0.011
Organization 0.903 0.901 +0.002
Periodx 0.967 0.966 +0.001
Ordinal_Number 0.891 0.890 +0.001
Location 0.951 0.946 +0.005
Facility 0.865 0.858 +0.007
Event 0.884 0.877 +0.007
Age 0.987 0.985 +0.002
Percent 0.990 0.987 +0.003
Natural_Object 0.853 0.817 +0.036
Disease 0.947 0.900 +0.047
Multiplication 1.00 1.00 0
Rank 0.896 0.912 −0.016
Numex_Other 0.731 0.686 +0.045
Frequency 0.667 0.511 +0.156
Point 0.891 0.871 +0.020
Measurement 0.966 0.942 +0.024
Money 0.991 0.994 −0.003
School_Age 0.962 0.905 +0.057
Color 0.895 0.729 +0.166
God 0.571 0.333 +0.238
Name_Other 0.769 0.566 +0.203
Latitude_Longtitude 0.00 0.00 0

∗ dif. means TDf − TDb

was 0.9254, which was obviously better than Shen’s
model, namely 0.8839. These results prove that the
inclusion of POS and Japanese particles is effective.
Next, we evaluated our proposed methods using

forward, backward, and both LSTM in Tag Decoder.
Table 4 presents the F1-score of our models on the
test data, while Table 5 compares TDf and TDb for
each NE class. The model with forward LSTM
in Tag Decoder slightly outperforms the backward
model in the overall F1-score in Table 4 and most
of the NE classes in Table 5. However, TDb is bet-
ter than TDf for some NE classes, namely, Product,
Person, Money and Rank. When forward and back-

ward LSTM are combined, the F1-score is slightly
improved from the model using only forward LSTM.
Although the difference is small, it is confirmed by
McNemar’s test that TDfb is significantly better than
TDb at the 95% confidence level. From the above
results, we can conclude that combining forward and
backward LSTM in Tag Decoder is effective.

Figure 7: F1-score on the development data of TDfb and
TDfb-sep

We evaluated the separate embedding fine-tuning
by comparing TDfb and TDfb-sep. Figure 7 shows
the change of F1-score on the development data of
these two models. In the training of TDfb-sep, the
parameters of the character and word embeddings
were fixed until the 60th epoch where the loss func-
tion saturates in the training. After the 61st epoch,
the parameters of the character andword embeddings
were fine-tuned, while the model parameters were
fixed. It can be seen in Figure 7 that the F1-score is
sharply improved at the 61st epoch. Furthermore, in
the comparison on the test data in Table 4, the F1-
score of TDfb-sep is significantly better than that of
TDfb, at the 99% confidence level. These results in-
dicate that the idea of updating the model parameters
and embedding parameters separately is effective for
training the neural based NER model.
Finally, the precision(P), recall(R) and F1-

score(F) of our best model, TDfb-sep, for each NE
class are shown in Table 6. The last column “NE”
shows the number of named entities in the test data.
Among the 26 NE classes, the F1-scores for 17
classes are higher than 90%, which are satisfying
results for a practical NLP system. The F1-score is
lower than 80% when the number of named entities
in the test data (also in the training data) is small, as

330



Table 6: Performance of NER for each class
NE class P R F NE
Product 0.961 0.949 0.955 5580
Person 0.970 0.969 0.969 3021
Timex 0.976 0.990 0.983 2215
Countx 0.955 0.932 0.943 1333
Organization 0.940 0.910 0.925 2649
Periodx 0.968 0.978 0.973 495
Ordinal_Number 0.940 0.915 0.927 328
Location 0.971 0.939 0.955 3413
Facility 0.855 0.943 0.894 916
Event 0.908 0.885 0.897 766
Age 0.985 0.992 0.988 384
Percent 0.981 0.997 0.988 303
Natural_Object 0.931 0.773 0.845 436
Disease 0.900 0.960 0.929 150
Multiplication 1.00 1.00 1.00 13
Rank 0.974 0.912 0.942 205
Numex_Other 0.773 0.699 0.734 73
Frequency 0.476 0.769 0.588 13
Point 0.892 0.916 0.904 154
Measurement 0.937 0.966 0.951 292
Money 0.988 0.990 0.989 411
School_Age 0.916 0.974 0.944 78
Color 0.780 0.914 0.842 35
God 0.400 0.500 0.444 4
Name_Other 0.600 0.800 0.686 15
Latitude_Longtitude 0.00 0.00 0.00 0
micro average 0.944 0.944 0.944 23282
macro average 0.845 0.868 0.854 23282

is the case with Numex_Other, Frequency, God, and
Name_Other. This might be caused by the insuffi-
ciency of the training data. However, the F1-scores
of the named entities that are often regarded as im-
portant reach over or around 90%, such as Timex
(98.3%), Person (96.9%), Product(95.5%), Location
(95.5%), Organization (92.5%), and Event (89.7%).

5 Conclusion

This paper proposed the novel method of deep learn-
ing for Named Entity Recognition in Japanese. Our
model consisted of three neural network modules:
Character Encoder, Word Encoder and Tag Decoder.
In addition to word embedding and character embed-
ding, two important features were added. One was
the part-of-speech that is widely used in various NLP
tasks, the other was the Japanese particles, which
play a significant grammatical role in Japanese.
The first contribution of this paper was to com-

bine forward and backward LSTM in Tag Decoder.

The information of both left and right contexts was
thought to be necessary for an accurate NER. How-
ever, since the NER tag of one or the other of either
the previous or succeeding words is inapplicable in
a sequential labeling model, BiLSTM could not be
simply applied. To use both the previous and suc-
ceeding NE tags for classification, models using for-
ward LSTM and backward LSTM in Tag Decoder
were separately trained, then, in the test phase, the
NE tag of each word was determined by the sum of
the probability distributions of the NE tags of the two
models. Our model using both directions of LSTM
slightly outperformed the models with forward or
backward LSTM in our experiment.
The second contribution was to propose a method

of fine-tuning of the word and character embed-
dings. Although fine-tuning an embedding has been
a promising approach to improve the performance of
deep learning models for NLP, it increases the num-
ber of parameters considerably. In our approach, the
model parameters were first trained with pre-trained
and fixed word and character embeddings, then the
parameters of the word and character embeddings
were fine-tuned with the fixed model parameters.
This method was able to improve the F1-score by
0.01 point in our experiment. Furthermore, our best
model was obviously better than the baseline, and
achieved an F1-score of 0.944.
In the future, we will explore other effective fea-

tures to be added to the neural network in order to
improve the model performance. We will also in-
vestigate various adjustment methods for the hyper
parameter estimation. Another important line of fu-
ture research is to investigated whether the model
with two directional tag decoder is effective for NER
of other languages such as English. We plan to eval-
uate our model on CoNLL-2003 English dataset.

Acknowledgements

This research is financially supported by the Na-
tional Science and TechnologyDevelopment Agency
(NSTDA), National Research University Project,
Thailand Office of the Higher Education Com-
mission, Japan Advanced Institute of Technology
(JAIST), and Infrastructure Engineering Research
Unit, Sirindhorn International Institute of Technol-
ogy (SIIT), Thammasat University (TU).

331



References
Raghavendra Chalapathy, Ehsan Zare Borzeshi, and Mas-

simo Piccardi. 2016. Bidirectional LSTM-CRF for
clinical concept extraction. ClinicalNLP 2016, page 7.

Jason P. C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Transac-
tions of the Association for Computational Linguistics,
4:357–370.

Kyunghyun Cho, Bart VanMerriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder-decoder for statistical
machine translation. Proceedings of the Empiricial
Methods in Natural Language Processing.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Chuanhai Dong, Jiajun Zhang, Chengqing Zong,
Masanori Hattori, and Hui Di. 2016. Character-
based LSTM-CRF with radical-level features for Chi-
nese named entity recognition. In NLPCC/ICCPOL.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks,
18(5–6):602–610.

Taiichi Hasimoto, Takashi Inui, and Koji Murakami.
2008. Constructing extended named entity annotated
corpora. Technical Report, 008-NL-188:113–120.
Written in Japanese.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

John J. Hopfield. 1982. Neural networks and physical
systems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sciences
of the USA, 79(8):2554–2558.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, vol-
ume abs/1412.6980.

Onur Kuru, Ozan Arkan Can, and Deniz Yuret. 2016.
Charner: Character-level named entity recognition. In
Proceedings of COLING 2016, the 26th International

Conference on Computational Linguistics: Technical
Papers, pages 911–921.

John D. Lafferty, AndrewMcCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Confer-
ence on Machine Learning, pages 282–289, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
The 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pages 260–270.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1064—
-1074, Berlin, Germany.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In INTERSPEECH, pages
3771–3775.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Shotaro Misawa, Motoki Taniguchi, Yasuhide Miura,
and Tomoko Ohkuma. 2017. Character-based bidi-
rectional LSTM-CRF with words and characters for
Japanese named entity recognition. In Proceedings of
the First Workshop on Subword and Character Level
Models in NLP, pages 97–102.

Thien Huu Nguyen, Avirup Sil, Georgiana Dinu, and
Radu Florian. 2016. Toward mention detection robust-
ness with recurrent neural networks. In Proceedings of
IJCAI Workshop on Deep Learning for Artificial Intel-
ligence, volume abs/1602.07749, New York, USA.

Hoang Pham and Le-Hong Phuong. 2017. End-to-end re-
current neural network models for Vietnamese named
entity recognition: Word-level vs. character-level. In
The 15th International Conference of the Pacific Asso-
ciation for Computational Linguistics.

Satoshi Sekine and Chikashi Nobata. 2004. Definition,
dictionaries and tagger for extended named entity hi-
erarchy. In Proceedings in the 4th International Con-
ference on Language Resources and Evaluation, pages
1977–1980.

Yan Shao, Christian Hardmeier, and Joakim Nivre. 2016.
Multilingual named entity recognition using hybrid
neural networks. In The Sixth Swedish Language Tech-
nology Conference.

332



Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2018. Deep
active learning for named entity recognition. In Inter-
national Conference on Learning Representations.

Yuji Matsumoto Taku Kudo. 2002. Japanese dependency
analysis using cascaded chunking. In Proceedings of
the 6th Conference on Natural Language Learning,
pages 63–69.

Erik F Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL, volume 4, pages 142–147.
Association for Computational Linguistics.

Kai Xu, Zhanfan Zhou, Tianyong Hao, and Wenyin Liu.
2018. A bidirectional LSTM and conditional random
fields approach to medical named entity recognition.
In International Conference on Advanced Intelligent
Systems and Informatics, pages 355–365.

Zhilin Yang, Ruslan Salakhutdinov, and William W. Co-
hen. 2016. Multi-task cross-lingual sequence tagging
from scratch. CoRR, abs/1603.06270.

333


	41_paclic33_proceedings
	41_PACLIC_33_paper_18




