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Abstract

Comparative constructions play an important
role in natural language inference. However,
attempts to study semantic representations and
logical inferences for comparatives from the
computational perspective are not well devel-
oped, due to the complexity of their syntactic
structures and inference patterns. In this study,
using a framework based on Combinatory Cat-
egorial Grammar (CCG), we present a compo-
sitional semantics that maps various compara-
tive constructions in English to semantic rep-
resentations, and introduce an inference sys-
tem that effectively handles logical inference
with comparatives, including those involving
numeral adjectives, antonyms, and quantifica-
tion. We evaluate the performance of our sys-
tem on the FraCaS test suite and show that the
system can handle a variety of complex logical
inferences with comparatives.

1 Introduction

Gradability is a pervasive phenomenon in natural
language and plays an important role in natural lan-
guage understanding. Gradable expressions can be
characterized in terms of the notion of degree. Con-
sider the following examples:

(1) a. My car is more expensive than yours.

b. My car is expensive.

The sentence (1a), in which the comparative form of
the gradable adjective expensive is used, compares
the price of two cars, making it a comparison be-
tween degrees. The sentence (1b), which contains

the positive form of the adjective, can be regarded
as a construction that compares the price of the car
to some implicitly given degree (i.e., price).

In formal semantics, many in-depth analyses use
a semantics of gradable expressions that relies on
the notion of degree (Cresswell, 1976; Kennedy,
1997; Heim, 2000; Lassiter, 2017, among others).
Despite this, meaning representations and inferences
for gradable expressions have not been well devel-
oped from the perspective of computational seman-
tics in previous research (Pulman, 2007). Indeed, a
number of logic-based inference systems have been
proposed for the task of Recognizing Textual En-
tailment (RTE), a task to determine whether a set
of premises entails a given hypothesis (Bos, 2008;
MacCartney and Manning, 2008; Mineshima et al.,
2015; Abzianidze, 2016; Bernardy and Chatzikyri-
akidis, 2017). However, these logic-based systems
have performed relatively poorly on inferences with
gradable constructions, such as those collected in the
FraCaS test suite (Cooper et al., 1994), a standard
benchmark dataset for evaluating logic-based RTE
systems (see §5 for details).

There are at least two obstacles to developing a
comprehensive computational analysis of gradable
constructions. First, the syntax of gradable construc-
tions is diverse, as shown in (2):

(2) a. Ann is tall. (Positive)
b. Ann is taller than Bob. (Phrasal)
c. Ann is taller than Bob is. (Clausal)
d. Ann is as tall as Bob. (Equative)
e. Ann is 2′′ taller than Bob. (Differential)

In the examples above, (2c) is a clausal comparative

47 
33rd Pacific Asia Conference on Language, Information and Computation (PACLIC 33), pages 47-56, Hakodate, Japan, September 13-15, 2019 

Copyright © 2019 Izumi Haruta, Koji Mineshima and Daisuke Bekki



in which tall is missing from the subordinate than-
clause. (2e) is an example of a differential compar-
ative in which a measure phrase, 2′′ (2 inches), ap-
pears. The diversity of syntactic structures makes
it difficult to provide a compositional semantics for
comparatives in a computational setting.

Second, gradable constructions give rise to vari-
ous inference patterns that require logically compli-
cated steps. For instance, consider (3):

(3) P1: Mary is taller than 4 feet.

P2: Harry is shorter than 4 feet.

H: Mary is taller than Harry.

To logically derive H from P1 and P2, one has to
assign the proper meaning representations to each
sentence, and those representations include numeral
expressions (4 feet), antonyms (short/tall), and their
interaction with comparative constructions.

For these reasons, gradable constructions pose an
important challenge to logic-based approaches to
RTE, serving as a testbed to act as a bridge between
formal semantics and computational semantics.

In this paper, we provide (i) a compositional se-
mantics to map various gradable constructions in
English to semantic representations (SRs) and (ii) an
inference system that derives logical inference with
gradable constructions in an effective way. We will
mainly focus on gradable adjectives and their com-
parative forms as representatives of gradable expres-
sions, leaving the treatment of other gradable con-
structions such as verbs and adverbs to future work.

We use Combinatory Categorial Grammar
(CCG) (Steedman, 2000) as a syntactic com-
ponent of our system and the so-called A-not-A
analysis (Seuren, 1973; Klein, 1980, 1982;
Schwarzschild, 2008) to provide semantic rep-
resentations for comparatives (§2, §3). We use
ccg2lambda (Martı́nez-Gómez et al., 2016) to
implement compositional semantics to map CCG
derivation trees to SRs. We introduce an axiomatic
system COMP for inferences with comparatives in
typed logic with equality and arithmetic operations
(§4). We use a state-of-the-art prover to implement
the COMP system. We evaluate our system1 on the
two sections of the FraCaS test suite (ADJECTIVE

1All code is available at:
https://github.com/izumi-h/fracas-comparatives adjectives

and COMPARATIVE) and show that it can handle
various complex inferences with gradable adjectives
and comparatives.

2 Background

2.1 Comparatives in degree-based semantics
To analyze gradable adjectives, we use the two-
place predicate of entities and degrees as developed
in degree-based semantics (Klein, 1982; Kennedy,
1997; Heim, 2000; Schwarzschild, 2008). For in-
stance, the sentence Ann is 6 feet tall is analyzed as
tall(Ann, 6 feet), where tall(x, δ) is read as “x is
(at least) as tall as degree δ”.2

In degree-based semantics, there are at least two
types of analyses for comparatives. Consider (4), a
schematic example for a comparative construction.

(4) A is taller than B is.

The first approach is based on the maximality oper-
ator (Stechow, 1984; Heim, 2000). Using the maxi-
mality operator (max) as illustrated in (5), the sen-
tence (4) is analyzed as a statement asserting that the
maximum degree δ1 of A’s tallness is greater than
the maximum degree δ2 of B’s tallness.

(5) max(λδ.tall(A, δ)) > max(λδ.tall(B, δ))

A

B

0 δ
δ1δ2

The other approach is the A-not-A anal-
ysis (Seuren, 1973; Klein, 1980, 1982;
Schwarzschild, 2008). In this type of analysis,
(4) is treated as stating that there exists a degree δ′

of tallness that A satisfies but B does not, as shown
in (6).

(6) ∃δ (tall(A, δ) ∧ ¬ tall(B, δ))

A

B

0 δ
δ1δ2 δ′

2For simplicity, we do not consider the internal structure of a
measure phrase like 6 feet. For an explanation of why tall(x, δ)
is not treated as “x is exactly as tall as δ”, see, e.g., Klein (1982).
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Table 1: Semantic representations of basic comparative constructions
Type Example SR
Increasing Comparatives Mary is taller than Harry. ∃δ (tall(m, δ) ∧ ¬ tall(h, δ))
Decreasing Comparatives Mary is less tall than Harry. ∃δ(¬tall(m, δ) ∧ tall(h, δ))

Equatives Mary is as tall as Harry. ∀δ(tall(h, δ)→ tall(m, δ))

Table 2: Semantic representations of complex comparative constructions
Type Example SR
Subdeletion Comparatives Mary is taller than the bed is long. ∃δ(tall(m, δ) ∧ ¬ long(the(bed), δ))
Measure phrase comparatives Mary is taller than 4 feet. ∃δ(tall(m, δ) ∧ (δ > 4′))
Differential Comparatives Mary is 2 inches taller than Harry. ∀δ(tall(h, δ)→ tall(m, δ + 2′′))
Negative Adjectives Mary is shorter than Harry. ∃δ (short(m, δ) ∧ ¬ short(h, δ))

Although the two analyses are related as illus-
trated in the figures (5) and (6), we can say that the
A-not-A analysis is less complicated and easier to
handle than the maximality-based analysis from a
computational perspective, mainly because it only
involves constructions in first-order logic (FOL).3

We thus adopt the A-not-A analysis and extend it
to various types of comparative constructions for
which inference is efficient in our system.

2.2 Basic syntactic assumptions
There are two approaches to the syntactic analysis
of comparative constructions. The first is the ellip-
sis approach (e.g. Kennedy, 1997), in which phrasal
comparatives such as (2b), are derived from the cor-
responding clausal comparatives, such as (2c). The
other is the direct approach (e.g. Hendriks, 1995),
which treats phrasal and clausal comparatives inde-
pendently and does not derive one from the other.
An argument against the ellipsis approach is that it
has difficulties in accounting for coordination such
as that in (7) (Hendriks, 1995).

(7) a. Someone at the party drank more vodka
than wine.

b. Someone at the party drank more vodka
than someone at the party drank wine.

Here, (7a), a phrasal comparative with an existential
NP someone, does not have the same meaning as the
corresponding clausal comparative (7b); the person
who drank vodka and the one who drank wine do
not have to be the same person in (7b), whereas they

3See van Rooij (2008) for a more detailed comparison of the
two approaches.

must be the same person in (7a).4 In this study, we
adopt the direct approach and use CCG to formalize
the syntactic component of our system.

3 Framework

3.1 Semantic representations
Table 1 shows the SRs for basic constructions of
comparatives under the A-not-A analysis we adopt.
Using this standard analysis, we also provide SRs
for more complex constructions, including subdele-
tion, measure phrases, and negative adjectives. Ta-
ble 2 summarizes the SRs for these constructions.

Some remarks are in order about how our sys-
tem handles various linguistic phenomena related to
gradable adjectives and comparatives.

Antonym and negative adjectives Short is the
antonym of tall, which is represented as short(x, δ)
and has the meaning “the height of x is less than
or equal to δ”. Thus, we distinguish between the
monotonicity property of positive adjectives such as
tall and fast and that of negative adjectives such as
short and slow. For positive adjectives, if tall(x, δ)
is true, then x satisfies all heights below δ; by con-
trast, for negative adjectives, if short(x, δ) is true,
then x satisfies all the heights above δ.

In general, for a positive adjective F+ and a neg-
ative adjective F−, (8a) and (8b) hold, respectively.

(8) ∀δ1∀δ2 : δ1 > δ2 →
a. ∀x(F+(x, δ1)→ F+(x, δ2))

b. ∀x(F−(x, δ2)→ F−(x, δ1))
4See Hendriks (1995) and Kubota and Levine (2015) for

other arguments against the ellipsis approach.
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Positive form and comparison class As men-
tioned in §1, the positive form of an adjective is re-
garded as involving comparison to some threshold
that can be inferred from the context of the utterance.
We write θF(A) to denote the contextually specified
threshold for a predicate F given a set A, which is
called COMPARISON CLASS (Klein, 1982). When
a comparison class is implicit, as in (9a) and (10a),
we use the universal set U as a default comparison
class5; we typically abbreviate θF(U) as θF . Thus,
(9a) is represented as (9b), which means that the
height of Mary is more than or equal to the thresh-
old θtall. Similarly, the SR of (10a) is (10b), which
means that the height of Mary is less than or equal
to the threshold θshort.

(9) a. Mary is tall.
b. tall(m, θtall)

(10) a. Mary is short.
b. short(m, θshort)

A threshold can be explicitly constrained by an NP
modified by a gradable adjective. Thus, (11a) can be
interpreted as (11b), relative to an explicit compari-
son class, namely, the sets of animals.6

(11) a. Mickey is a small animal. (FraCaS-204)

b. small(m, θsmall(animal))∧animal(m)

Numerical adjectives We represent a numerical
adjective such as ten in ten orders by the predicate
many(x, n), with the meaning that the cardinal-
ity of x is at least n, where n is a positive inte-
ger (Hackl, 2000). For example, ten orders is an-
alyzed as λx.(order(x) ∧many(x, 10)). The fol-
lowing shows the SRs of some typical sentences in-
volving numerical adjectives.

(12) a. Mary won ten orders.
b. ∃x(order(x) ∧won(m, x)
∧many(x, 10))

(13) a. Mary won many orders.
b. ∃δ∃x(order(x) ∧won(m, x)
∧many(x, δ) ∧ (θmany < δ))

5In this case, we do not consider the context-sensitivity of
the implicit comparison class. See Narisawa et al. (2013) for
work on this topic in computational linguistics.

6Here and henceforth, when an example appears in the Fra-
CaS dataset, we refer to the ID of the sentence in the dataset.

(14) a. Mary won more orders than Harry.

b. ∃δ(∃x(order(x) ∧won(m, x)
∧many(x, δ)) ∧ ¬∃y(order(y)
∧won(h, y) ∧many(y, δ)))

3.2 Compositional semantics in CCG

Here we give an overview of how to compositionally
derive the SRs for comparative constructions in the
framework of CCG (Steedman, 2000). In the CCG-
style compositional semantics, each lexical item is
assigned both a syntactic category and an SR (rep-
resented as a λ-term). In this study, we newly in-
troduce the syntactic category D for degree and as-
sign S\NP\D to gradable adjectives. For instance,
the adjective tall has the category S\NP\D and the
corresponding SR is λδ.λx.tall(x, δ).

Table 3 lists the lexical entries for representative
lexical items used in the proposed system. We ab-
breviate the CCG category S\NP\D for adjectives
as AP and S/(S\NP ) (a type-raised NP) as NP ↑.7

The suffix -er for comparatives such as taller
is categorized into four types: clausal and phrasal
comparatives (-ersimp), subdeletion comparatives
(-ersub), measure phrase comparatives (-ermea), and
differential comparatives (-erdiff). We assume that
equatives are constructed from assimp and ascl; for in-
stance, the equative sentence in Table 1 corresponds
to Mary is assimp tall ascl Harry. For measure phrase
comparatives, such as Mary is taller than 4 feet,
we use thandeg; and for comparatives with numerals,
such as (14a), we use moresimp.

On the basis of these lexical entries, we can com-
positionally map various comparative constructions
to suitable SRs. Some example derivation trees
for comparative constructions are shown in Figure
1 and 2. An advantage of using CCG as a syn-
tactic theory is that the function composition rule
(>B) can be used for phrasal comparatives such
as that in Figure 1, where the VP is tall is miss-
ing from the subordinate than-clause. For positive
forms, we use the empty element pos of category
S\NP/(S\NP\D), as shown in Figure 2.8

7We also abbreviate λX1. . . . λXn.M as λX1 . . . Xn.M .
8Note that the role played by the empty element pos here can

be replaced by imposing a unary type-shift rule from S\NP\D
to S\NP .
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Table 3: Lexical entries in CCG-style compositional semantics
PF CCG categories SR
tall AP λδx.tall(x, δ)
Mary NP mary
is S\NP/(S\NP ) id
4′ D 4′

thansimp S/S id
thandeg D/D id

thangq S\NP\(S\NP/NP ↑)/NP ↑ λQWx.Q(λy.W (λP.P (y))(x))
pos S\NP/AP λA.A(θA)

-ersimp S\NP/NP ↑\AP λAQx.∃δ(A(δ)(x) ∧ ¬Q(A(δ)))
-ersub S\NP/(S\D)\AP λAKx.∃δ(A(δ)(x) ∧ ¬K(δ))
-ermea S\NP/D\AP λAδ′x.∃δ(A(δ)(x) ∧ (δ > δ′))

-erdiff S\NP/NP ↑\D\AP λAδ′Qx.∀δ(Q(A(δ))→ A(δ + δ′)(x))

assimp S\NP/NP ↑/AP λAQx.∀δ(Q(A(δ))→ A(δ)(x))
ascl S/S id

morenum S\NP/NP ↑\(S\NP/NP )/N λNGQz.∃δ(∃x(N(x) ∧G(λP.P (x))(z) ∧many(x, δ))
∧¬∃y(N(y) ∧Q(G(λP.P (y))) ∧many(y, δ)))

moreis S\NP/NP ↑\(S\NP/NP )/N/AP λANGQz.∃δ(∃x(N(x) ∧G(λP.P (x))(z) ∧A(δ)(x)))
∧¬Q(λy.(N(y) ∧A(δ)(x)))

morehas S\NP/NP ↑\(S\NP/NP )/N/AP λANGQz.∃δ(∃x(N(x) ∧G(λP.P (x))(z) ∧A(δ)(x)))
∧¬∃y(N(y) ∧Q(G(λP.P (y))) ∧A(δ)(x))

Mary
NP : m

S/(S\NP ) :
λP.P (m)

>T

is
S\NP/(S\NP ) :

id

tall
S\NP\D :

λδx.tall(x, δ)

-ersimp

S\NP/(S/(S\NP ))\(S\NP\D) :
λAQx.∃δ(A(δ)(x) ∧ ¬Q(A(δ)))

S\NP/(S/(S\NP )) :
λQx.∃δ(tall(x, δ) ∧ ¬Q(λx.tall(x, δ)))

<

thansimp

S/S :
id

Harry
NP : h

S/(S\NP ) :
λP.P (h)

>T

S/(S\NP ) :
λP.P (h)

>B

S\NP :
λx.∃δ (tall(x, δ) ∧ ¬ tall(h, δ))

>

S\NP :
λx.∃δ (tall(x, δ) ∧ ¬ tall(h, δ))

>

S : ∃δ (tall(m, δ) ∧ ¬ tall(h, δ))
>

Figure 1: Derivation tree of Mary is taller than Harry

Harry
NP :
h

S/(S\NP ) :
λP.P (h)

>T

is
S\NP/(S\NP ) :

id

pos
S\NP/(S\NP\D) :

λA.A(θA)

tall
S\NP\D :

λδx.tall(x, δ)

S\NP :
λx.tall(x, θtall)

>

S\NP :
λx.tall(x, θtall)

>

S :
tall(h, θtall)

>

Figure 2: Derivation tree of Harry is tall

Quantification When determiners such as all or
some appear in than-clauses, we need to consider
the scope of the corresponding quantifiers (Larson,
1988). As examples, (15a) and (16a) are assigned
the SRs in (15b) and (16b), respectively.

(15) a. Mary is taller than everyone.

b. ∀y(person(y)
→ ∃δ (tall(m, δ) ∧ ¬ tall(y, δ)))

(16) a. Mary is taller than someone.
b. ∃y(person(y)
∧ ∃δ (tall(m, δ) ∧ ¬ tall(y, δ)))

Figure 3 shows a derivation tree for (15a). Here,
everyone in than-clause takes scope over the degree
quantification in the main clause. For this purpose,
we use the lexical entry for thangq in Table 3, which
handles these cases of generalized quantifiers.

Conjunction and disjunction Conjunction (and)
and disjunction (or) appearing in a than-clause show
different behaviors in scope taking, as pointed out
by Larson (1988). For instance, in (17a), the con-
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Mary
NP :
m

S/(S\NP ) :
>T

λP.P (m)

is
S\NP/(S\NP ) :

id

tall
S\NP\D :

λδx.tall(x, δ)

-ersimp

S\NP/(S/(S\NP ))\(S\NP\D) :

λAQx.∃δ(A(δ)(x) ∧ ¬Q(A(δ)))

S\NP/(S/(S\NP )) :
<

λQx.∃δ(tall(x, δ) ∧ ¬Q(λx.tall(x, δ)))

thangq

S\NP\(S\NP/(S/(S\NP )))/(S/(S\NP )) :

λQWx.Q(λy.W (λP.P (y))(x))

everyone
S/(S\NP ) :

λP.∀y(person(y)→ P (y))

S\NP\(S\NP/(S/(S\NP ))) :
>

λWx.∀y(person(y)→W (λP.P (y))(x))

S\NP :
<

λx.∀y(person(y)→ ∃δ(tall(x, δ) ∧ ¬tall(y, δ)))
S\NP :

>

λx.∀y(person(y)→ ∃δ(tall(x, δ) ∧ ¬tall(y, δ)))
S :

>

∀y(person(y)→ ∃δ(tall(m, δ) ∧ ¬tall(y, δ)))

Figure 3: Derivation tree of Mary is taller than everyone

junction and takes wide scope over the main clause,
whereas in (18a), the disjunction or can take narrow
scope; thus, we can infer Mary is taller than Harry
from both (17a) and (18a). These readings are rep-
resented as in (17b) and (18b), respectively.

(17) a. Mary is taller than Harry and Bob.
b. ∃δ (tall(m, δ) ∧ ¬ tall(h, δ))

∧ ∃δ (tall(m, δ) ∧ ¬ tall(b, δ))
(18) a. Mary is taller than Harry or Bob.

b. ∃δ(tall(m, δ)
∧ ¬(tall(h, δ) ∨ tall(b, δ)))

The difference in scope for these sentences can be
derived by using thansimp and thangq: thansimp de-
rives the narrow-scope reading (cf. the derivation
tree in Figure 1) and thangq derives the wide-scope
reading (cf. the derivation tree in Figure 3).

Attributive comparatives The sentence APCOM
has a more important customer than ITEL (FraCaS-
244/245) can have two interpretations, i.e., (19a) and
(20a), where the difference is in the verb of the than-
clause.

(19) a. APCOM has a more important customer
than ITEL is. (FraCaS-244)

b. ∃δ(∃x(customer(x)
∧ has(a, x) ∧ important(x, δ))
∧ ¬(customer(i) ∧ important(i, δ)))

(20) a. APCOM has a more important customer
than ITEL has. (FraCaS-245)

b. ∃δ(∃x(customer(x) ∧ has(a, x)
∧ important(x, δ))
∧ ¬∃y(customer(y) ∧ has(i, y)
∧ important(y, δ)))

We use moreis or morehas in Table 3 to give the com-
positional derivations of the SRs in (19b) and (20b),
respectively.

4 Inferences with comparatives

We introduce an inference system COMP for logi-
cal reasoning with gradable adjectives and compar-
atives based on the SRs under the A-not-A analysis
presented in §3. Table 4 lists some axioms of COMP

for inferences with comparatives. Here, F is an ar-
bitrary gradable predicate, F+ a positive adjective,
and F− a negative adjective.9

(CP) is the so-called Consistency Postu-
late (Klein, 1982), an axiom asserting that if there
is a degree satisfied by x but not by y, then every
degree satisfied by y is satisfied by x as well. By
(CP), we can derive the following inference rule.

∃δ (F(x, δ) ∧ ¬F(y, δ))
(CP⋆)

∀e(F(y, e)→F(x, e))

Using this rule, the inference from Mary is taller
than Harry and Harry is tall to Mary is tall can be
derived as shown in Figure 4.

∃δ (tall(m, δ) ∧ ¬ tall(h, δ))
(CP⋆)

∀e(tall(h, e)→ tall(m, e))
(∀E)

tall(h, θtall)→tall(m, θtall) tall(h, θtall)
(→E)

tall(m, θtall)

Figure 4: Example of a proof

(Ax1) and (Ax2) are axioms for positive and
negative adjectives described in (8). The axioms
from (Ax3) to (Ax6) formalize the entailment rela-
tions between antonym predicates. For instance, the
inference of (3) mentioned in §1 is first mapped to
the following SRs.

9We also use an axiom for privative adjectives such as for-
mer, drawn from Mineshima et al. (2015).
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Table 4: Axioms of COMP
(TH) θF+ > θF−

(CP) ∀x∀y(∃δ (F(x, δ) ∧ ¬F(y, δ))→ (∀e(F(y, e)→ F(x, e))))

(Ax1) ∀e∀x(F−(x, e)↔ ∀δ((δ≥ e)→ F−(x, δ)))

(Ax2) ∀e∀x(F+(x, e)↔ ∀δ((δ≤ e)→ F+(x, δ)))

(Ax3) ∀e∀x(F−(x, e)↔ ∀δ((δ > e)→ ¬F+(x, δ)))

(Ax4) ∀e∀x(F+(x, e)↔ ∀δ((δ < e)→ ¬F−(x, δ)))

(Ax5) ∀e∀x(¬F−(x, e)↔ ∀δ((δ≤ e)→ F+(x, δ)))

(Ax6) ∀e∀x(¬F+(x, e)↔ ∀δ((δ≥ e)→ F−(x, δ)))

(21) P1: ∃δ(tall(m, δ) ∧ (δ > 4′))

P2: ∃δ(short(h, δ) ∧ (δ < 4′))

H: ∃δ (tall(m, δ) ∧ ¬ tall(h, δ))

Then, it can be easily shown that H follows from P1

and P2, using the axioms (Ax2) and (Ax3).

5 Implementation and evaluation

To implement a full inference pipeline, one needs
three components: (a) a syntactic parser that maps
input sentences to CCG derivation trees, (b) a se-
mantic parser that maps CCG derivation trees to
SRs, and (c) a theorem prover that proves entailment
relations between these SRs. In this study, we use
manually constructed CCG trees as inputs and im-
plement components (b) and (c).10 For component
(b), we use ccg2lambda11 as a semantic parser and
implement a set of templates corresponding to the
lexical entries in Table 3. The system takes a CCG
derivation tree as an input and outputs a logical for-
mula as an SR. For component (c), we use the off-
the-shelf theorem prover Vampire12 and implement
the set of axioms described in §4.

Suppose that the logical formulas corresponding
to given premise sentences are P1, . . . , Pn and that
the logical formula corresponding to the hypothesis
(conclusion) is H . Then, the system outputs Yes if

10CCG parsers for English, such as C&C parser (Clark and
Curran, 2007) based on CCGBank (Hockenmaier and Steed-
man, 2007), are widely used, but there is a gap between the out-
puts of these existing parsers and the syntactic structures we as-
sume for the analysis of comparative constructions as described
in §3. We leave a detailed comparison between those structures
to another occasion. We also have to leave the task of combining
our system with off-the-shelf CCG parsers for future research.

11https://github.com/mynlp/ccg2lambda
12https://github.com/vprover/vampire

P1 ∧ · · · ∧ Pn → H can be proved by a theorem
prover, and outputs No if the negation of the hypoth-
esis (i.e., P1 ∧ · · ·Pn → ¬H) can be proved. If both
of them fail, it tries to construct a counter model;
if a counter model is found, the system outputs Un-
known. Since the main purpose of this implementa-
tion is to test the correctness of our semantic analy-
sis and inference system, the system returns error if
a counter model is not constructed with the size of
an allowable model restricted.

We evaluate our system on the FraCaS test suite.
The test suite is a collection of semantically complex
inferences for various linguistic phenomena drawn
from the literature on formal semantics and is cate-
gorized into nine sections. Out of the nine sections,
we use ADJECTIVES (22 problems) and COMPARA-
TIVES (31 problems). The distribution of gold an-
swers is: (yes, no, unknown) = (9, 6, 7) for ADJEC-
TIVES and (19, 9, 3) for COMPARATIVES. Table 6
lists some examples.

Table 5 gives the results of the evaluation. We
compared our system with existing logic-based RTE
systems. B&C (Bernardy and Chatzikyriakidis,
2017) is an RTE-system based on Grammatical
Framework (Ranta, 2011) and uses the proof assis-
tant Coq for theorem proving. The theorem prov-
ing part is not automated but manually checked.
Nut (Bos, 2008) and MINE (Mineshima et al., 2015)
use a CCG parser (C&C parser; Clark and Cur-
ran, 2007) and implement a theorem-prover for
RTE based on FOL and higher-order logic, respec-
tively. LP (Abzianidze, 2016) is a system, Lang-
Pro, that uses two CCG parsers (C&C parser and
EasyCCG; (Lewis and Steedman, 2014)) and im-
plements a tableau-based natural logic inference
system. M&M (MacCartney and Manning, 2008)
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Table 5: Accuracy on FraCaS test suite. ‘#All’ shows the number of all problems and ‘#Single’ the number of single-
premise problems.

Section #All Ours B&C Nut MINE LP M&M (#Single)

ADJECTIVES 22 1.00 .95 .32 .68 .73 .80* (15)
COMPARATIVES 31 .94 .56 .45 .48 - .81* (16)

Table 6: Examples of entailment problems from the Fra-
CaS test suite

FraCaS-198 (ADJECTIVES) Answer: No

Premise 1 John is a former university student.

Hypothesis John is a university student.

FraCaS-224 (COMPARATIVES) Answer: Yes

Premise 1 The PC-6082 is as fast as the ITEL-XZ.

Premise 2 The ITEL-XZ is fast.

Hypothesis The PC-6082 is fast.

FraCaS-229 (COMPARATIVES) Answer: No

Premise 1 The PC-6082 is as fast as the ITEL-XZ.

Hypothesis The PC-6082 is slower than the ITEL-XZ.

FraCaS-231 (COMPARATIVES) Answer: Unknown

Premise 1 ITEL won more orders than APCOM did.

Hypothesis APCOM won some orders.

FraCaS-235 (COMPARATIVES) Answer: Yes

Premise 1 ITEL won more orders than APCOM.

Premise 2 APCOM won ten orders.

Hypothesis ITEL won at least eleven orders.

uses an inference system for natural logic based
on monotonicity calculus. M&M was only eval-
uated for a subset of the FraCaS test suite, con-
sidering single-premise inferences and excluding
multiple-premise inferences. These four systems,
Nut, MINE, LP, and M&M, are fully automated.

Although direct comparison is impossible due to
differences in automation and the set of problems
used for evaluation (single-premise or multiple-
premise), our system achieved a considerable im-
provement in terms of accuracy. It should be noted
that by using arithmetic implemented in Vampire
our system correctly performed complex inferences
from numeral expressions such as that in FraCaS-
235 (see Table 6). Because we did not implement
a syntactic parser and used gold CCG trees instead,
the results show the upper bound of the logical ca-

pacity of our system. Note also that the five systems
(B&C, MINE, LP, M&M, and ours) were developed
in part to solve inference problems in FraCaS, where
there is no separate test data for evaluation. Still,
these problems are linguistically very challenging;
from a linguistic perspective, the point of evalua-
tion is to see how each system can solve a given in-
ference problem. Overall, the results of evaluation
suggest that a semantic parser based on degree se-
mantics can, in combination with a theorem prover,
achieve high accuracy for a range of complex infer-
ences with adjectives and comparatives.

There are two problems in the COMPARATIVES

section that our system did not solve: the inference
from P to H1 and the one from P to H2, both having
the gold answer Yes.
P : ITEL won more orders than the APCOM contract.
H1: ITEL won the APCOM contract. (FraCaS-236)
H2: ITEL won more than one order. (FraCaS-237)

To solve these inferences in a principled way, we
will need to consider a more systematic way of han-
dling comparative constructions that expects at least
two patterns with missing verb phrases.

6 Conclusion

We proposed a CCG-based compositional semantics
for gradable adjectives and comparatives using the
A-not-A analysis studied in formal semantics. We
implemented a system that maps CCG trees to suit-
able SRs and performs theorem proving for RTE.
Our system achieved high accuracy on the sections
for adjectives and comparatives in FraCaS.

In future work, we will further extend the empir-
ical coverage of our system. In particular, we will
cover deletion operations like Gapping in compara-
tives, as well as gradable expressions other than ad-
jectives. Combining our system with a CCG parser
is also left for future work.
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Martı́nez-Gómez, P., Mineshima, K., Miyao, Y., and
Bekki, D. (2016). ccg2lambda: A Compositional
Semantics System. In Proceedings of ACL 2016
System Demonstrations, pages 85–90.

Mineshima, K., Martı́nez-Gómez, P., Miyao, Y., and
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