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Abstract

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) encodes the meaning of
sentences as a directed graph and Smatch (Cai
and Knight, 2013) is the primary metric for
evaluating AMR graphs. Smatch, however,
is unaware of some meaning-equivalent vari-
ations in graph structure allowed by the AMR
Specification and gives different scores for
AMRs exhibiting these variations. In this pa-
per I propose four normalization methods for
helping to ensure that conceptually equivalent
AMRs are evaluated as equivalent. Equiv-
alent AMRs with and without normalization
can look quite different—comparing a gold
corpus to itself with relation reification alone
yields a difference of 25 Smatch points, sug-
gesting that the outputs of two systems may
not be directly comparable without normaliza-
tion. The algorithms described in this paper
are implemented on top of an existing open-
source Python toolkit for AMR and will be re-
leased under the same license.

1 Introduction

Abstract Meaning Representation (AMR; Banarescu
et al., 2013) encodes the meaning of sentences in a
rooted, directed acyclic graph of concepts (labeled
nodes) and relations (labeled edges). It was intro-
duced as being to semantics what the Penn Treebank
(Marcus et al., 1994) was to syntax—a simple pair-
ing of sentences and hand-authored annotations—
and aimed to coalesce multiple aspects of semantic
annotation that had previously been done separately,
such as named entity recognition, role labeling, and
coreference resolution, into one form.

Research efforts targeting AMR often use the
Smatch metric (Cai and Knight, 2013) for evalua-
tion. Smatch views AMR graphs as bags of triples
and attempts to find a mapping of nodes between
two AMRs that results in the highest F-score in
terms of matching triples. The result is a single score
for a list of AMR pairs. As AMR encodes many as-
pects of meaning in one graph, some have found it
useful to divide up the parts of the graph that Smatch
evaluates so as to inspect a parser’s aptitude in each
task (Damonte et al., 2017). Nevertheless, Smatch
remains the primary underlying method for compar-
ing AMRs and thus ensuring that it is a fair metric is
important for the task of semantic parsing.

The AMR Specification1 describes some features
of the representation that expand its expressiveness
and improve its legibility, such as reifying graph
edges to nodes so that the meaning of the edge can
be used by other parts of the graph, and rules for
inverting edges so the graph can be linearized into
the PENMAN format (Matthiessen and Bateman,
1991). The specification says that these alternations
express the same meaning, but they result in differ-
ent triples used by Smatch for comparison.

In this paper, I investigate the effects these differ-
ences have on comparison and propose normaliza-
tion methods to aid in resolving them. Normaliza-
tion is intended as a preprocessing step to evaluation
and is done to both the gold and test corpus. The
purpose is not to yield higher Smatch scores or to
change system outputs, but to ensure that concep-
tually equivalent AMRs evaluate as equivalent and
that no system is unfairly penalized or rewarded.

1https://github.com/amrisi/
amr-guidelines
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2 Background

While AMR and its PENMAN notation are often
considered one and the same, I find that distinguish-
ing them aids the discussion of the Smatch metric,
so in this section I explain all three in turn.

2.1 PENMAN Graph Notation

PENMAN notation for AMR is a variation of Sen-
tence Plan Language (Kasper and Whitney, 1989)
for the PENMAN project (Matthiessen and Bate-
man, 1991). The notation is applicable to graphs
that are: (1) directed and acyclic (DAGs), (2) con-
nected, (3) with a distinguished root called the top,
and (4) with labeled nodes and edges.2 The basic
syntax for nodes and edges is as follows:

〈node〉 ::= ‘(’ 〈id〉 ‘/’ 〈node-label〉 〈edge〉* ‘)’

〈edge〉 ::= ‘:’〈edge-label〉 (〈const〉|〈id〉|〈node〉)

The recursion of nodes as targets of edges can
only capture projective structures such as trees. In
order to encode multiple roots (besides the top
node), edges are inverted so the source becomes the
target by appending -of to the edge label. For reen-
trancies, node identifiers, also and hereafter called
variables, are reused.3 Figure 1 shows an example
PENMAN serialization, with all the above features,
along with the graph it describes.

(n1 / A
:attr "value"
:edge1 (n2 / B)
:edge2-of (n3 / C

:edge3 n2))

top

A

B C

”value”
attr

edge1 edge2

edge3

Figure 1: PENMAN notation and the equivalent graph

This paper uses the relative terms parent and child
for the nodes of an edge in the tree structure and
source and target for nodes in the directed graph
edges (i.e., such that parent=source in regular edges
and parent=target in inverted edges). Edges whose

2No technical reason precludes cyclic and unlabeled graphs
in PENMAN but I will consider these errors for this paper.

3Kasper and Whitney (1989) allowed node attributes and
edges to be distributed across multiple references to the node
but I will not consider this feature in this paper.

target is a constant are attributes. The place where a
node specifies its label is the node definition.

AMR, described in the next section, uses PEN-
MAN notation to serialize its graph structure. While
AMR and PENMAN share a history, the graph nota-
tion is not restricted to AMR and could in principle
be used for any graphs that meet its criteria. For ex-
ample it has also been used to encode Dependency
Minimal Recursion Semantics (DMRS; Copestake,
2009) for neural text generation (Hajdik et al., 2019)
and machine translation (Goodman, 2018).

2.2 Abstract Meaning Representation
Where PENMAN notation is the serialization for-
mat, Abstract Meaning Representation (Banarescu
et al., 2013) is the semantic framework. As AMR
graphs encode semantic information, it refers to
node labels as concepts, to edges as relations, and
to edge labels as roles. AMR defines in the speci-
fication and annotation documentation4 the invento-
ries of valid concepts and roles and their usage. An
AMR graph serialized in PENMAN notation, as in
Fig. 2, is simply called an AMR, but it can also be
represented as a sequence of triples, as in Fig. 3.
Node labels are represented by instance triples5

and the top node is indicated with the :TOP triple.

(d / drive-01
:ARG0 (h / he)
:manner (c / care-04

:polarity -))

Figure 2: AMR for He drives carelessly.

instance(d, drive-01) ˆ
instance(h, he) ˆ
instance(c, care-04) ˆ
TOP(top, d) ˆ
ARG0(d, h) ˆ
manner(d, c) ˆ
polarity(c, -)

Figure 3: Triples for He drives carelessly.

Several PENMAN graphs may correspond to the
same set of triples. A tree-structured graph as in

4https://www.isi.edu/˜ulf/amr/lib/roles.
html

5Some prefer instance-of but the choice is arbitrary; I use
instance to avoid the ramifications of inverted edges.
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Fig. 2 has limited options—the branches for :ARG0
and :manner can swap positions, but that’s it—but
graphs with reentrancies can “rotate” on the reen-
trant nodes. For example, the graph in Fig. 1 could
also be represented as in Fig. 4 or 26 other ways.6

These alternative serializations do not affect the
meaning as determined by the triples (used in eval-
uation as discussed below), but they can cause is-
sues for systems that learn the serialized character
sequences (e.g., Konstas et al., 2017; van Noord and
Bos, 2017). Konstas et al. (2017) found that human
annotators preferred to insert non-core and inverted
relations in the same order as in the original sen-
tence, which leaked ordering information.

(n1 / A
:edge1 (n2 / B

:edge3-of (n3 / C
:edge2 n1))

:attr "value")

Figure 4: Alternative serialization of the graph in Fig. 1

While AMR lacks a notion of scope and has no
direct model theoretic interpretation,7 it can encode
partial scope information implicitly. For example,
the AMRs for the fast car is red and the red car is
fast would differ only by which concept, fast-02 or
red-02, is the top of the graph (AMR calls this “fo-
cus”). If the examples were, instead, the fast car that
is red and the red car that is fast, then car would be
the top of both and the triples would be the same,
but the PENMAN serializations could differ. Fur-
thermore, reentrancies in AMR present a choice of
which occurrence of a variable gets the node defini-
tion. It would not be surprising, therefore, for anno-
tators to prefer different PENMAN arrangements for
sentences with the same triples, as in Figs. 5 and 6.
Put another way, the PENMAN serialization can en-
code information not present in the triples.

The AMR Specification also describes equiva-
lent8 variants where the triples do in fact differ. One

6There are 6 rotations and each rotation has 2 or 6 arrange-
ments by swapping branch positions; more are possible when
the top node is not fixed.

7Bos (2016) proposed a transformation to first-order logic
and also found that a minor change to AMR could allow nega-
tion scope to be accurately encoded. Stabler (2017) extended
this work and included tense and number features.

8Equivalent only by the AMR Specification, not necessarily

(b / bite-01
:ARG0 (d / dog

:ARG0-of (c / chase-01
:ARG1 (b / boy)))

:ARG1 b)

Figure 5: AMR for The dog chasing the boy bit him.

(b / bite-01
:ARG0 d
:ARG1 (b / boy

:ARG1-of (c / chase-01
:ARG0 (d / dog))))

Figure 6: AMR for The boy chased by the dog was bit by
it.

case is the roles :domain and :mod, which are con-
sidered equivalent in the inverse (i.e., :domain-of
is equivalent to :mod, etc.). The other case is rei-
fied relations, where a relation between two nodes
becomes a binary node, which is useful when the re-
lation itself interacts with other parts of the graph.
These are explained further in Sections 3.1 and 3.2.

2.3 Smatch

Smatch (Cai and Knight, 2013) is the primary metric
used for AMR evaluation. It estimates the “overlap”
between two AMRs by finding a mapping of vari-
ables that optimizes the number of matching triples.
Precision is defined as M

T and recall as M
G where M

is the number of matching triples, T is the number
of test triples, and G is the number of gold triples,9

and the final Smatch score is the F-score of these
two. Finding an ideal mapping is an NP-complete
task, so Smatch approximates it using greedy search
with random restarts to avoid local optima. As regu-
lar and inverted relations in AMR are the same when
presented as triples, any rearrangement of the PEN-
MAN form for the same triples (as discussed in Sec-
tion 2.2) will yield the same results as long as the
top node does not change, exempting search errors.

Smatch is naı̈ve with respect to AMR-specific in-
terpretations of PENMAN graphs—it only considers
the most direct translation of PENMAN graphs to

logical equivalence by a mapping of AMR to logical forms.
9The Smatch utility I use (see Section 4) does not specify

gold and test, only the first and second arguments. Swapping
these arguments swaps precision and recall. I set the gold cor-
pus to the second argument.
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triples. It does not consider equivalent alternations
where the triples do change (such as :domain vs
:mod alternations and relation reifications) as equiv-
alent, and these alternations will lead to score dif-
ferences. Smatch is also not robust to subtly invalid
graphs, such as inverted edges whose source (i.e.,
child in the tree structure) is a constant.10 In this
case, the triple will be ignored completely, leading
to an inflated score.

Moreover, Smatch gives no credit for a correct
role or value unless both are correct. For example,
the first line in the Little Prince corpus is Chapter
7 with the AMR (c / chapter :mod 7), but all
three parsers I tested failed to output the correct re-
lation (one gave :quant 7, another :li 7, and an-
other :op1 7). They are therefore all penalized in
recall for missing the :mod 7 relation and again in
precision for their incorrect attempt, and none get
credit for the correct value of 7. Omitting the rela-
tion entirely (e.g., (c / chapter)) yields a higher
score, but that’s hardly ideal.

The AMR normalizations described in this paper
ensure equivalent AMRs have the same triples and
thus the same score. In addition, two of the normal-
izations involve reification which replaces a single
triple with several, and this presents a tradeoff: it
can allow “partial credit” for getting the role or the
value correct, but getting both wrong hurts the score
worse than getting a single relation wrong.

3 AMR Normalization

This section describes two meaning-preserving
AMR normalizations and two meaning-augmenting
normalizations. The first two include canonical role
inversions and relation reification, while the lat-
ter two include attribute reification and PENMAN
structure preservation.

3.1 Canonical Role Inversions

The roles of inverted relations are marked with an
-of suffix, and generally they are deinverted by re-
moving the suffix. AMR, however, specifies sev-
eral roles whose canonical form contains the suffix
-of, namely :consist-of, :prep-on-behalf-of,
and :prep-out-of, and the inverse form of

10Only nodes, not constants, may specify relations. These
invalid graphs occur occasionally in the output of some parsers.

these therefore requires an additional suffix (e.g.,
:prep-out-of-of). In addition there is :mod which
is equivalent to the inverse of :domain, and vice-
versa.11 If a gold corpus contained :mod while the
test corpus used :domain-of, Smatch would not see
these as equivalent and the score would drop.

By normalizing inverted roles to their canonical
forms, such as :domain-of → :mod, :consist →
:consist-of-of, the Smatch score will not differ
for such alternations. Some may argue that nor-
malizing invalid roles such as :consist in this way
is meaning-altering, but as the naı̈ve inversions of
these roles are not separately defined roles in AMR
there is no chance of conflation, and in this case I
take the position that practicality beats purity.

3.2 Relation Reifications
Some specific relations in AMR can be reified into
concepts with separate relations for the original re-
lation’s source and target. For example, Fig. 7
is equivalent to Fig. 2 with :manner reified to
have-manner-91. While its possible to reify every
eligible relation, in practice all are collapsed unless
it is necessary to have the node, so Fig. 2 would gen-
erally be preferred over Fig. 7.

(d / drive-01
:ARG0 (h / he)
:ARG1-of (h2 / have-manner-91

:ARG2 (c / care-04
:polarity -))

Figure 7: AMR for He drives carelessly with :manner

reified to have-manner-91

(d / drive-01
:ARG0 (h / he)
:ARG1-of (h2 / have-manner-91

:ARG2 (c / care-04)
:polarity -))

Figure 8: AMR for He doesn’t drive carefully.

There are three situations where reification is use-
ful: (1) when the meaning of the relation itself is the
focus or the argument of another concept instance;
(2) when it breaks a cycle in the graph; and (3) when

11The specification suggests that :mod is the inverse of
:domain, but that could not be true as :mod appears in attribute
relations and a relation’s source cannot be a constant.

40



Role Concept Source Target
:degree have-degree-92 :ARG1 :ARG2

:manner have-manner-91 :ARG1 :ARG2

:purpose have-purpose-91 :ARG1 :ARG2

Table 1: Sample of reification definitions

an annotator uses a “shortcut” role in a relation. Sit-
uation (1) is the only case that is strictly necessary.
For example, Fig. 8 is used to express He doesn’t
drive carefully, where the have-manner property is
negated rather than the manner itself. The breaking
of cycles in situation (2) is possible because reifica-
tion replaces an edge with a node and two outgoing
edges, thus becoming a new root (but not necessar-
ily the graph’s top). These kinds of reifications en-
sure that the graph remains a DAG—a property that
may be useful for some applications. The “shortcut”
roles of situation (3) are a feature of the AMR Edi-
tor (Hermjakob, 2013) provided as a convenience to
annotators. They are always reified automatically by
the editor and therefore might be considered not part
of the official role inventory in the AMR framework.
Annotators not using the editor, however, might use
them as they are listed in the specification, so it is
still useful to reify these in normalization.

In implementation, reification is not complicated.
The process uses a defined mapping of roles to
AMR fragments containing the reified concept and
the roles that capture the original relation’s source
and target. A sample of these definitions is shown
in Table 1; the full list is given in Appendix A.
Reification uses this mapping to replace some
relation (a :<role> b) with (a :<source>-of

(c / <concept> :<target> b)) for regular
relations and (a :<target>-of (c / <concept>

:<source> b)) for inverted relations. Reification
used in normalization will always have one inverted
edge as the original AMR would not have had any
way to focus the pre-reified relation.

Collapsing, or dereifying, nodes to edges is
slightly more complicated because there are more
restrictions on when it can be applied. A node
can only be collapsed if it does not participate in
relations (including the :TOP relation) other than
those resulting from reification.12 For example,

12While it is possible to pull out and collapse the information
relating to the reified relation and leave in place the node and its

have-manner-91 in Fig. 7 can be collapsed but
it cannot be in Fig. 8 because in the latter it is
involved in the :polarity relation. The change to
the graph itself is just the opposite of reification: (a
:<source>-of (c / <concept> :<target> b))

becomes (a :<role> b) and (a :<target>-of

(c / <concept> :<source> b) becomes (a

:<role>-of b).
There are additional complexities when the reifi-

cation mapping is not one-to-one; that is, when
it maps multiple relations to the same concept
or a single relation to multiple alternative con-
cepts. For the first case, normalization always
introduces a new node for each reified relation,
even when multiple relations on the same node are
mapped to the same concept. This case only oc-
curs with the shortcut roles :employed-by/:role
and :subset/:superset. For the second case the
relations will not be reified because it is undecidable
which of the competing concepts should be used,
and likewise in dereification information would be
lost by collapsing both concepts to the same rela-
tion. This case occurs with :poss reifying to either
own-01 or have-03, and :beneficiary reifying to
either benefit-01 and receive-01.

The effect of reification on the Smatch score can
be large. By reifying one relation to a node with two
relations, the net total of triples increases by two. In
the gold corpus (see Sections 4 and 5), roughly 15%
of triples were reifiable, so a fully-reified corpus
would contain roughly 30% more triples. The result
is that Smatch will require more time and memory
to compute a score, and the search for the variable
mapping may become less stable because there are
more nodes to search over. This normalization can
affect the Smatch score by amplifying certain kinds
of errors and giving partial credit for others. Table 2
shows a gold item (the top AMR for five apples)
and several test AMRs with various differences. The
Collapsed column shows the Smatch score between
the gold and test AMRs when the relations are left
as-is, and the Reified column shows the score when
both gold and test are reified. Smatch’s preference
for missing versus incorrect relations becomes a dis-
preference unless the test AMR’s role differs and is
not reifiable (:unit in Table 2).

additional relations, I do not do so here.
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AMR Collapsed Reified
(a / apple :quant 5) - -
(a / apple) 0.80 0.57
(a / apple :quant 1) 0.67 0.80
(a / apple :mod 5) 0.67 0.80
(a / apple :mod 1) 0.67 0.60
(a / apple :unit 5) 0.67 0.50
(a / apple :unit 1) 0.67 0.50

Table 2: Difference in Smatch score with and without
reification (top is gold, rest are test, bold are differences)

3.3 Attribute Reification

As mentioned in Section 2.3, Smatch silently drops
triples whose source is not a valid variable, leading
to inflated scores. While canonical role inversions
(such as :domain-of to :mod) help here, the situ-
ation can be completely averted by reifying every
constant into a node with a new unique variable and
with the constant as the node’s concept. For exam-
ple, :mod 7 becomes :mod ( / 7). The result is
not meaning-equivalent as the alternation is not pro-
vided by the AMR Specification, but it will at least
allow each triple to be considered in evaluation. The
effect on Smatch is that each attribute triple is re-
placed with a relation and a concept triple, thus in-
creasing the number of triples by one for each con-
stant. It also allows for partial credit, similar to reifi-
cation.

3.4 PENMAN Structure Preservation

Section 2.2 described two kinds of variation in PEN-
MAN that correspond to the same triples: the order
of serialized relations on a node and which occur-
rence of a node contains the node definition. As
discussed, these differences can be used to encode
nuance or hints to the surface form that the AMR
annotates. In order to preserve the information en-
coded by the location of node definitions, additional
:TOP relations may be used to indicate which node
is the top of the node being defined. These parallel
the tree structure rather than the DAG, so they do
not invert if the child of an inverted relation (i.e., the
relation’s source) is a node definition.13 Inserting
these relations into an AMR with n nodes results in

13These :TOP relations could lead to a cyclic structure so it is
not recommended as a general annotation practice.

n − 1 new triples as one is not inserted for the top
node in the graph. The effect on Smatch is a boost
in the score of AMRs that define nodes in the same
place.

4 Experiment Setup

For information about roles and their reifications I
use the AMR 1.2.6 Specification14 and the anno-
tator documentation of roles as of May 1, 2019.15

For reification I use all non-ambiguous mappings,
which excludes :beneficiary and :poss, and for
dereification I also exclude mappings of shortcut
roles. My experiments use the training portion
of the freely-available Little Prince corpus (ver-
sion 1.6).16 For reading and writing PENMAN
graphs I use the open-source Penman package for
Python.17 I used JAMR (Flanigan et al., 2016),18

CAMR (Wang et al., 2016),19 and AMREager (Da-
monte et al., 2017)20 for producing system outputs.
All systems use their included models trained on the
LDC2015E86 (SemEval Task 8) data, which is out-
of-domain for the Little Prince corpus but the parsers
then all use comparable models. For comparison I
use Smatch (Cai and Knight, 2013).21

5 Corpus Analysis

I first inspect the corpus to understand the distribu-
tion of normalizable AMRs. Table 3 shows the num-
ber of nodes and triples in The Little Prince corpus
(1,274 AMRs) for both gold annotations and system
outputs. These counts are used for calculating the
percentages in Tables 4 and 5.

Table 4 shows the percentage of graphs and
triples that have the non-canonical :domain-of and
:mod-of relations. They do not appear in the gold
annotations, CAMR output, or AMREager output,

14https://github.com/amrisi/
amr-guidelines

15https://www.isi.edu/˜ulf/amr/lib/roles.
html

16https://amr.isi.edu/download.html
17https://github.com/goodmami/penman/
18Semeval-2016 branch as of March 21, 2019:

https://github.com/jflanigan/jamr
19Master branch as of February 19, 2018:

https://github.com/c-amr/camr
20Master branch as of April 11, 2019:

https://github.com/mdtux89/amr-eager
21https://github.com/snowblink14/smatch/
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Corpus # Nodes # Triples
Gold 8,189 16,832
JAMR 8,115 15,509
CAMR 7,404 13,922
AMREager 7,461 15,226

Table 3: Corpus sizes

but do in the JAMR output along with a small num-
ber of :consist relations (not shown), and no cor-
pus used non-canonical inversions of the :prep-*

relations. This is not unexpected, as the gold cor-
pus does not contain any instances of these roles, so
data-driven parsers would have no examples to learn
from. A parser that assembles the graph and inverts
as necessary to serialize may be susceptible.

% :domain-of % :mod-of
Corpus Graphs Triples Graphs Triples
Gold 0 0 0 0
JAMR 5.81 0.52 8.63 0.80
CAMR 0 0 0 0
AMREager 0 0 0 0

Table 4: Non-canonical role inversions

Table 5 shows the percentage of graphs and rela-
tions that are reifiable and the percentage of graphs
and nodes that are collapsible. All systems have
roughly as many reifiable graphs and relations as the
gold corpus. CAMR is the only system that outputs
reified relations that can be collapsed, although the
number is miniscule.

% Reifiable % Collapsible
Corpus Graphs Rels Graphs Nodes
Gold 78.96 15.23 0 0
JAMR 73.94 13.07 0 0
CAMR 68.68 14.22 0.16 0.03
AMREager 76.92 17.02 0 0

Table 5: Reifiable relations and collapsible nodes

Using Smatch to compare two versions of the
gold corpus—one original and one with reified
relations—yields an F-Score of 0.75, or a drop of
25 Smatch points. This result is an estimate of the
range of score variation when a system perfectly re-
produces the gold corpus but makes the opposite de-
cision regarding reification.

6 System Evaluation

Here I test the effect the normalizations have on
Smatch when evaluating system outputs to the gold
corpus. Table 6 shows the results of the three sys-
tems with various normalizations. While JAMR was
the only parser that output non-canonical roles, nor-
malizing the roles did not help its score; in fact,
the score dropped slightly. Some of JAMR’s non-
canonical roles were inverted relations to constants,
so Smatch was ignoring them. Normalizing them
would thus hurt the score unless the normalized re-
lations were correct. Reification (both kinds) gen-
erally led to higher scores, meaning that most rela-
tions that were reified were fully or partially correct.
One result that stands out is structure preservation;
for both JAMR and AMREager it led to decreased
scores but it helped CAMR, showing that CAMR is
more likely to place node definitions where an anno-
tator would. Finally, the normalization helped AM-
REager close the gap with JAMR, and in some con-
figurations even surpass it.

7 Related Work

Konstas et al. (2017) normalized AMRs is a de-
structive way in order to reduce data sparsity for
their character-based neural parser and generator.
My normalization methods can also reduce sparsity
but they also generally increase the size and com-
plexity of the graph, so it’s not clear if it would
aid character-based models. Damonte et al. (2017)
found that parsers do well on different sub-tasks,
such role labeling and word-sense disambiguation,
and ran Smatch on different subsets of the triples
in order to highlight a parser’s performance in each
task. In addition, Damonte et al. also found
that Smatch weighted certain error types more than
others, although they looked at more application-
specific error types, like the representation of proper
names. In contrast, I compare using the full graphs
as the goal is normalization, not specialization. My
normalization methods are mostly compatible with
the subtask evaluation of Damonte et al. 2017 but
some the evaluation tasks look for certain roles
which disappear on reification. Anchiêta et al.
(2019) also noticed that Smatch gives more weight
to the top node of the graph, but they reached differ-
ent conclusions. Where I proposed adding :TOP re-
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Normalization Score
System I A R S P R F

JAMR

0.60 0.56 0.58
X 0.60 0.55 0.57

X 0.61 0.56 0.58
X 0.63 0.57 0.60

X 0.59 0.55 0.57
X X 0.63 0.57 0.60

X X 0.64 0.57 0.60
X X X 0.64 0.57 0.60
X X X X 0.61 0.56 0.59

CAMR

0.67 0.56 0.61
X 0.67 0.56 0.61

X 0.67 0.55 0.60
X 0.70 0.57 0.63

X 0.68 0.58 0.63
X X 0.69 0.57 0.63

X X 0.70 0.56 0.62
X X X 0.70 0.56 0.62
X X X X 0.70 0.58 0.63

AMREager

0.57 0.52 0.55
X 0.57 0.52 0.55

X 0.57 0.53 0.55
X 0.61 0.57 0.59

X 0.59 0.54 0.56
X X 0.61 0.57 0.59

X X 0.60 0.58 0.59
X X X 0.60 0.58 0.59
X X X X 0.61 0.57 0.59

Table 6: Smatch results comparing gold to system out-
puts with the original graphs, canonical role inversions
(I), attribute reification (A), relation reification (R), and
structure preservation (S)

lations to all nodes to preserve the PENMAN struc-
ture, they discard the :TOP node, meaning that the
AMRs for the fast car is red and the red car is fast
are evaluated as equivalent. Barzdins and Gosko
(2016) presented extensions to Smatch including a
visualization of per-sentence error patterns and an
ensemble selection from multiple test AMRs per
gold AMR. The latter extension could in principle be
combined with the normalization procedures I have
described, however it would need to be augmented
to allow for the normalizations of the gold corpus as
well as the test corpus.

8 Conclusion and Future Work

AMR provides flexibility with the way that equiva-
lent graphs are encoded. This flexibility can make

life easier for annotators and parsers alike, but it
also means that evaluation tools not aware of these
allowed alternations can give unfair results. I in-
troduced four normalization methods in this paper.
Of these, canonical role inversion, relation reifica-
tion, and attribute reification are intended to tame
the variation that can reasonably appear in parser
outputs. The fourth, PENMAN structure preserva-
tion, makes evaluation more strictly account for an-
notation choices which may implicitly encode subtle
distinctions in meaning, like scope or nuance.

The evaluation results when comparing a normal-
ized test corpus to the similarly normalized gold cor-
pus are not drastically different. I think this result is
a good thing, particularly because comparing a cor-
pus to itself with and without normalization has a
very large difference in scores. It suggests that nor-
malization, done to both sides, resolves small dif-
ferences. While one parser I tested, CAMR, main-
tained its lead with normalized outputs, the third-
place parser AMREager nearly caught up to the
second-place JAMR. The relative changes in eval-
uation scores may important for determining state-
of-the-art parsers or for shared task competitions.

The normalizations may be useful not only for
evaluation but for preprocessing for data-driven
workflows. By removing sources of variation, data
sparsity can be reduced which could benefit parser
training. The increase in graph size due to the nor-
malization, however, may counteract the benefits. I
leave this question open to future research.

The code for this paper is available online at
https://github.com/goodmami/norman.
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A Relation Reifications

Role Concept Source Target Reifies Dereifies Shortcut
:accompanier accompany-01 :ARG0 :ARG1 X X
:age age-01 :ARG1 :ARG2 X X
:beneficiary benefit-01 :ARG0 :ARG1

:beneficiary receive-01 :ARG2 :ARG0

:cause cause-01 :ARG1 :ARG0 X X
:concession have-concession-91 :ARG1 :ARG2 X X
:condition have-condition-91 :ARG1 :ARG2 X X
:cost cost-01 :ARG1 :ARG2 X X
:degree have-degree-92 :ARG1 :ARG2 X X
:destination be-destined-for-91 :ARG1 :ARG2 X X
:domain have-mod-91 :ARG2 :ARG1 X X
:duration last-01 :ARG1 :ARG2 X X
:employed-by have-org-role-91 :ARG0 :ARG1 X X
:example exemplify-01 :ARG0 :ARG1 X X
:extent have-extent-91 :ARG1 :ARG2 X X
:frequency have-frequency-91 :ARG1 :ARG2 X X
:instrument have-instrument-91 :ARG1 :ARG2 X X
:li have-li-91 :ARG1 :ARG2 X X
:location be-located-at-91 :ARG1 :ARG2 X X
:manner have-manner-91 :ARG1 :ARG2 X X
:meaning mean-01 :ARG1 :ARG2 X X
:mod have-mod-91 :ARG1 :ARG2 X X
:name have-name-91 :ARG1 :ARG2 X X
:ord have-ord-91 :ARG1 :ARG2 X X
:part have-part-91 :ARG1 :ARG2 X X
:polarity have-polarity-91 :ARG1 :ARG2 X X
:poss own-01 :ARG0 :ARG1

:poss have-03 :ARG0 :ARG1

:purpose have-purpose-91 :ARG1 :ARG2 X X
:quant have-quant-91 :ARG1 :ARG2 X X
:role have-org-role-91 :ARG0 :ARG2 X X
:source be-from-91 :ARG1 :ARG2 X X
:subevent have-subevent-91 :ARG1 :ARG2 X X
:subset include-91 :ARG2 :ARG1 X X
:superset include-91 :ARG1 :ARG2 X X
:time be-temporally-at-91 :ARG1 :ARG2 X X
:topic concern-02 :ARG0 :ARG1 X X
:value have-value-91 :ARG1 :ARG2 X X

Table 7: Full mapping of roles and concepts used for reification, dereification, and editor shortcuts
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